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Summary. The additive risk model is a useful alternative to the proportional hazards model.

It postulates that the hazard function is the sum of the baseline hazard function and the

regression function of covariates. In this article, we investigate estimation in the additive

risk model with right censored survival data and high dimensional covariates. A LASSO

(least absolute shrinkage and selection operator) approach is proposed for estimating the

regression parameters. We propose using the L1 boosting algorithm, which is computationally

affordable and relatively easy to implement, to compute the LASSO estimates. The V -fold

cross validation is applied to select the tuning parameter and the weighted bootstrap is used

to estimate the variances of the LASSO estimators. The proposed approach is illustrated

with analysis of the PBC clinical data and the DLBCL genomic data. It is shown that this

approach can provide interpretable and sparse predictive models with satisfactory predication

and classification properties.
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1. Introduction

Survival analysis for right censored data with high dimensional covariates has drawn extensive

attentions in recent years. This article is partly motivated by the studies of linking gene

expression profile to censored survival outcome, for example time to cancer relapse (Alizadeh

et al., 2000; Garber et al., 2001; Rosenwald et al., 2002). Consider the study of genome-

wide gene expression profiling analysis for diffuse large B-cell lymphoma (DLBCL) reported

by Alizadeh et al. (2000), where the goal is to identify the statistical influence of molecular

features of the tumor on the survival of patients. Gene expression levels of 13413 clones

and survival information are measured for 40 patients. Statistically, standard estimation

approaches cannot yield a unique estimator, when the dimension of covariates is greater than

the sample size. Biologically, it is reasonable to assume that only a small number of genes are

relevant to predicting the phenotype. Model reduction is necessary before any downstream

analysis.

Dimension reduction has been extensively investigated for linear regression models (Miller,

1990; Helland and Almoy, 1994; Roecker, 1991; Jolliffe, 1986). One widely used approach is to

use low dimensional projections of the covariates as surrogates for the true covariates. Exam-

ples include the ridge regression, the partial least squares (PLS) technique, and the principal

component regression (for a detailed discussion, see Jolliffe, 1986). However, including all

the covariate effects in the predictive models through projections may introduce noises which

may lead to poor predictive performance, and it may difficult to interpret such models. An

alternative approach is to use model selection techniques, for example the step-wise variable

selection method, to choose important covariates. This can usually be accomplished by using

penalization methods. A general approach is outlined in Fan and Li (2001). It has been noted

that penalization methods may be numerically unstable with large numbers of covariates hav-

ing small to moderate effects. Generally speaking, neither of these strategies dominates the
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other, and how well a method works needs to be evaluated on case by case basis.

Modeling survival data with high dimensional covariates is more challenging due to the

presence of censoring and the use of complicated semiparametric models. One approach used

by Alizadeh et al. (2000) with microarray data is to cluster genes first, and then use the

sample averages of the gene expression levels in a Cox model for right censored survival

outcome. Another well developed clustering based algorithm is the gene harvesting procedure

of Hastie et al. (2001). Nguyen and Rocke (2002) apply the standard PLS method and

use the resulted PLS components in the Cox model. Li and Luan (2003) consider a penalized

estimation procedure for the Cox model using kernels, under the assumption that the covariate

effects are smooth functions of gene expression levels. Tibshirani (1997) and Gui and Li

(2004) investigate LASSO (least absolute shrinkage and selection operator, Tibshirani 1996)

type estimates for the Cox model with right censored data. In a recent study, Ma, Kosorok

and Fine (2004) apply the principal component regression to additive risk models with right

censored data.

An additive model is generally adopted when it is reasonable to assume that the covariate

effects under consideration contribute additively to the conditional hazard. Consider one

special form of the additive risk models studied in Lin and Ying (1994), where we model the

conditional hazard at time t by

λ(t|Z) = λ0(t) + β′0Z,(1)

given a d-dimensional vector of time-independent covariates Z. Here β0 and λ0(·) denote

the unknown regression parameter and the unknown baseline hazard function, respectively.

Previous studies have concluded its sound biological and empirical bases (Breslow and Day,

1987) and satisfactory statistical properties (Lin and Ying, 1994; Huffer and McKeague, 1991;

McKeague and Sasieni, 1994).
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Inspired by the special form of the estimating equations (Lin and Ying, 1994), we propose a

LASSO type estimate, which minimizes a least-squares-type objective function subject to a L1

constraint, for the additive risk model (1) when the dimension of the covariate is high. Because

of the nature of the L1 constraint, the LASSO method shrinks coefficients and produces some

coefficients that are exactly zero, thus it can yield a sparse and interpretable model.

The goal of the current study is to develop a computationally affordable and well-behaved

estimating approach, which can effectively reduce the dimension of the covariates for right

censored survival data, under the additive risk model assumption. In Section 2, we first give a

brief description of the additive hazard model, describe the LASSO method in this model, and

then use the V -fold cross validation for tuning parameter selection and the weighted bootstrap

for inference. In Section 3, we propose using a L1 boosting algorithm to compute the LASSO

estimates in the additive hazard model. The proposed approach is demonstrated with two

examples in section 4. Concluding remarks are in section 5.

2. LASSO estimate in additive risk model

2.1 Additive risk model

Consider a set of n independent observations (Ti, Ci, Zi), i = 1, . . . , n. Suppose that the ith

subject’s event time Ti is conditionally independent of the censoring time Ci, given the d-

dimensional covariate vector Zi. For simplicity of notations, we consider time-independent

Z only throughout this paper unless otherwise specified. Let Xi = min(Ti, Ci) and δi =

I(Ti ≤ Ci) for right censored data. We assume the additive risk model (1). Other format

of additive risk models have been studied in Huffer and McKeague (1991) and Mckeague

and Sasieni (1994). For the ith subject, denote {Ni(t) = I(Xi ≤ t, δi = 1); t ≥ 0} and

{Yi(t) = I(Xi ≥ t); t ≥ 0} as the observed event process and the at-risk process, respectively.

The regression coefficient β0 can be estimated by solving the following estimating equation:
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U(β) =
n∑

i=1

∫ ∞

0

Zi{dNi(t)− Yi(t)dΛ̂(β, t)− Yi(t)β
′Zidt} = 0,(2)

where Λ̂(β, t) is the estimator of Λ0 satisfying

Λ̂(β̂, t) =

∫ t

0

{dNi(u)− Yi(u)β̂′Zidu}∑n
i=1 Yi(u)

.(3)

The resulting estimator of β0 satisfies the simple equation

[
n∑

i=1

∫ ∞

0

Yi(t){Zi − Z̄(t)}⊗2dt

]
β̂ =

[
n∑

i=1

∫ ∞

0

{Zi − Z̄(t)}dNi(t)

]
,(4)

where Z̄(t) =
∑n

i=1 Yi(t)Zi/
∑n

i=1 Yi(t). Denote Li =
∫∞

0
Yi(t){Zi − Z̄(t)}⊗2dt and Ri =

∫∞
0
{Zi − Z̄(t)}dNi(t). Ls are symmetric semi-positive-definite matrices with rank equal to 1.

When d is comparable to n, serious collinearity in Z may exist, and thus the estimate

obtained by solving (4) may be numerically unstable. When d is larger than n, unique solution

to equation (4) does not exist. Proper model reduction is needed.

2.2 The LASSO estimate

Denote the (s, l) element of Li as Li
s,l and the sth component of Ri and β as Ri

s and βs,

respectively. We can see that equation (4) is equivalent to the following d equations:

(
n∑

i=1

Li
s,1

)
β1 + ... +

(
n∑

i=1

Li
s,d

)
βd =

n∑
i=1

Ri
s, s = 1, . . . , d.(5)

The validity of the estimating equation (4) does not depend on any assumption of d and

n. The similarity between the estimating equations (5) and the normal equations for simple

linear models motivates model reduction for the additive risk model with the following LASSO

type estimator:

β̂ = argminβ



M(β) =

d∑
s=1

{(
n∑

i=1

Li
s,1

)
β1 + ... +

(
n∑

i=1

Li
s,d

)
βd −

n∑
i=1

Ri
s

}2


 ,(6)
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subject to the L1 constraint that |β|1 = |β1| + . . . |βd| ≤ u, for a data-dependent tuning

parameter u, which indirectly determines how many covariates have zero coefficients. For

n ≥ d, denote β̂∗ as the minimizer of M(β) without the L1 constraint. If u ≥ ∑ |β̂∗s |, the

solution to (6) with constraint is the usual unbiased estimate. Otherwise, β̂ may be biased.

However, β̂ may have ”mean squared errors” smaller than β̂∗ because of the bias variance

trade off inherent to the penalization methods.

One unique characteristic of the LASSO estimate in the additive risk model is that the

summation in (6) is over d, the dimension of covariates, not over the sample size as in the

linear regression model. However, considering the equivalence of (6) and (4), the LASSO

estimate defined in (6) can provide model reduction in the β space. The simplicity of the

estimating equation in (6) for the additive risk model is not shared by other survival models.

For the Cox model in Tibshirani (1997), a weighted least squares approximation to the partial

likelihood function and an iterative computational algorithm are needed.

Occasionally, there may exist certain covariate effects that are known to be effective a

priori. In this case interest lies in more accurate adjustment for other covariate effects and

shrinkage of coefficients (of effective covariates) is not preferred. In such an instance, one

may simply omit the corresponding βs’ from the L1 constraint. The L1 boosting algorithm

discussed in section 3 can be applied to such situations with minor modifications.

2.3 Tuning parameter selection

We propose choosing the tuning parameter u with the following V -fold cross validation

(Wahba, 1990) for a pre-defined integer V . Partition the data randomly into V non-overlapping

subsets of equal sizes. Chose u to minimize the cross-validated objective function

CV score(u) =
V∑

v=1

[
M(β̂(−v))−M (−v)(β̂(−v))

]
,(7)

where β̂(−v) is the LASSO estimate of β based on the data without the vth subset for a
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fixed u and M (−v) is the function M defined in (6) evaluated without the vth subset. Com-

pared with the usual leave-one-out cross validation (Huang and Harrington, 2002), the V -fold

cross-validation is preferred here because of its computational simplicity and sound theoret-

ical properties (van der Laan, Dudoit and Keles, 2003). Another possible tuning parameter

selection technique is the generalized cross validation as used in Tibshirani (1997). Relative

efficacy of different validation techniques is of interest but is beyond the scope of the present

article.

2.4 Inference

Inference based on the LASSO estimator is done using the special form of the GCV score in

Tibshirani (1997). It is not clear how to extend that approach to the estimate proposed here.

As an alternative, we consider the following weighted bootstrap based inference.

Let W denote a positive random variable satisfying E(W ) = 1 and var(W ) = 1, and

let w1, . . . , wn be n i.i.d. copies of W . Denote Li(w) =
[∑n

i=1

∫∞
0

Yi(t){Zi − Z̄w(t)}⊗2dt
]

and Ri(w) =
[∑n

i=1

∫∞
0
{Zi − Z̄w(t)}dNi(t)

]
, where Z̄w(t) =

∑n
i=1 wiYi(t)Zi/

∑n
i=1 wiYi(t).

Consider the weighted LASSO estimator β̂w satisfying

β̂w = argmin





d∑
s=1

{(
n∑

i=1

wiL
i
s,1(w)

)
β1 + . . . +

(
n∑

i=1

wiL
i
s,d(w)

)
βd −

n∑
i=1

wiR
i
s(w)

}2


 ,

subject to the L1 constraint that |β|1 = |β1|+ . . . |βd| ≤ u, where u is the same as the tuning

parameter value for the estimator defined by (6).

To estimate the variance of β̂, we generate positive random weights wi, i = 1, . . . , n. Then

as described above, we compute the weighted estimator β̂w. This procedure is repeated K

times. The variance of β̂ can be estimated by the sample variance of (β̂w,1, . . . , β̂w,K).

The weighted bootstrap technique has been shown to be effective in estimation of the

additive risk model using principal components of the covariates (Ma, Kosorok and Fine,
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2004). Related theoretical studies of weighted bootstrap for general M-estimators can be

found in Ma and Kosorok (2004).

2.4 Model evaluation and comparison

For the estimators in the additive hazards model without constraints on the parameter pro-

posed by Lin and Ying (1994), model evaluation can be built based on the martingale structure,

which has not been proven to hold for the LASSO estimators. In Gui and Li (2004), time-

dependent ROC (receiver-operator-characteristic) curves are used to compare performances

of different models. Time-dependent ROC may be difficult to interpret, since it is a function

of time and a single test statistic cannot be easily constructed.

Although the martingale structure may not hold, the ”pseudo martingale residual” defined

by
∑n

i=1(δi − exp(−Λ̂(Ti)− β̂′ZiTi))
2 can still be used for model evaluation. A better model

should have smaller pseudo martingale residual. The pseudo martingale residual defined here

corresponds to the sum of squared errors in a linear regression model. An alternative model

evaluation approach can be based on the linear risk scores β̂′Zi. Assume the censoring time C

has density function g(c) and is independent of Z. Then Pr(δ = 1|Z) =
∫

(1− exp(−Λ0(c)−
β′0Zc))g(c)dc. So Pr(δ = 1|Z) is a monotone function of β′0Z under mild regularity conditions.

A better model should provide more accurate classification based on the estimated linear risk

scores β̂′Zi. Relevant discussions can be found in Pepe, Cai and Zhang (2004). The accuracy

of classification can be measured by the standard ROC curves, in which case the AUC (area

under curve) can be used as a single comparison criteria.

It is also of interest to quantify the similarity between different models with possibly

different set of covariates. We measure this by the correlation between the estimated linear

scores based on different set of covariates. A strong correlation suggests similar classification

performance.
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3. Computational algorithm

The L1 constraint is equivalent to adding a L1 penalty to the objective function and ignoring

the constraint (Tibshirani, 1997). Since the L1 penalty is not differentiable, usual derivative-

based minimization techniques (for example the Newton-Raphson) cannot be used to obtain

the estimate in (6). In most previous studies, the minimization relies on the quadratic pro-

gramming (QP) or general non-linear program which are known to be computationally in-

tensive. Moreover, the quadratic programming procedure cannot be applied directly to the

settings when the sample size is much smaller than the number of predictors.

Recent study by Kim and Kim (2004), which relates the minimization step for the LASSO

estimate to the L1 boosting algorithm, a regularized boosting algorithm proposed by Mason

et al. (2000), provides a computationally more feasible solution. The L1 boosting algorithm

can be applied to general objective functions (other than least squares criterion) with L1

constraints. For the current L1 constrained estimator defined in (6) with a fixed u, this

algorithm can be implemented in the following steps:

1. Initialization βs = 0 for s = 1 . . . d and m = 0.

2. With the current estimate of β = (β1, . . . , βd), compute

φk(β) =
d∑

s=1

{(
n∑

i=1

Li
s,1

)
β1 + ... +

(
n∑

i=1

Li
s,d

)
βd −

n∑
i=1

Y i
s

}
×

(
n∑

i=1

Li
s,k

)

for k = 1 . . . d.

3. Find k∗ that minimizes min(φk(β),−φk(β)). If φk∗(β) = 0, then stop the iteration.

4. Otherwise denote γ = −sign(φk∗(β)). Find α̂ that

α̂ = argminα∈[0,1]M((1− α)(β1, . . . , βd) + α× u× γηk∗),

where ηk∗ has the k∗th element equals to 1 and the rest equal to 0.
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5. Let βk = (1− α̂)βk for k 6= k∗ and βk∗ = (1− α̂)βk∗ + γuα̂. Let m = m + 1.

6. Repeat steps 2–5 until convergence or a fixed number of iterations N has been reached.

The β at convergence is the LASSO estimate in (6). We conclude convergence if the

absolute value of φk∗(β) computed in step 3 is less than a pre-defined criteria, and/or if M(β)

is less than a pre-defined threshold.

Compared with traditional algorithms, the L1 boosting only involves evaluations of simple

functions. Data analysis experiences show the computational burden for the L1 boosting is

minimal. As pointed out in Kim and Kim (2004), one attractive feature of the L1 boosting

algorithm is that the convergence rate is independent of the dimension of input. This property

of convergence rate is essential to the proposed approach since weighted bootstrap is used. Kim

and Kim (2004)provide an example where convergence can be achieved after 50 iterations for

a data set with a 36-dimensional covariate vector. On the other hand, it has been known that

for general boosting methods, over-fitting usually does not pose a serious problem (Friedman,

Hastie and Tibshirani, 2000). So the overall iteration N can be taken to be a large number

to ensure convergence.

4. Examples

4.1 PBC data

Between 1974 and 1984, the Mayo Clinic conducted a double-blinded randomized clinical trial

in primary cirrhosis of the liver (PBC). Values of 18 biological covariates were measured for 312

randomized patients. We focus on the 276 randomized patients with complete records only.

Descriptions of the experiment and data analysis can be found in Fleming and Harrington

(1991), where the Cox model is assumed.

As an alternative, we consider the additive risk model for the PBC data. log transfor-

mations of the covariate alkphos, bili, chol, copper, platelet, protime, sgot and trig are first
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made, so that the marginal distributions of those covariates are closer to the Normal dis-

tribution. Another reason for transformation is that the LASSO method usually requires

initial standardization of the regressors, so that the penalization scheme is comparable for all

regressors.

Model (1) is assumed for the relationship between survival time and the transformed

covariates. The LASSO estimate is obtained from (6), with u selected by the 10-fold cross

validation. After β is estimated, the cumulative baseline can be estimated using (3). For the

purpose of comparison, we also consider the full additive model, where all covariates (even

if not significant) are included in the additive model, and the simplified model where only

significant covariates identified by the backwards step-wise approach are included.

The LASSO approach with u = 0.195 (Figure 1) yields an estimate with only four non-zero

components (Table 1). It is interesting that the non-zero components from the LASSO are

not necessarily significant in the full model. The estimates from the LASSO and from the

step-wise approach may differ significantly. This has also been noticed in Tibshirani (1997).

Inference results with the weighted bootstrap proposed in section 2.4 and exponential weights

are also shown in Table 1. We can see that the stepwise procedure mostly inflates the Z

scores of chosen variables relative to the full model, and the LASSO mainly shrinks them

towards zero. Similar phenomena has been observed for the Cox model (Tibshirani, 1997).

This similarity observation partly supports the validity of the proposed inference procedure.

The pseudo martingale residuals are 78.36 (for the full model), 70.03 (for the step-wise

approach) and 67.58 (for the LASSO estimate). The LASSO approach has smaller ”sum of

squared errors”, although the differences are small. We generate two hypothetical risk groups

based on the estimated linear risk scores in a manner that there are equal number of subjects

in two risk groups. The survival curves for the two groups are shown in Figure 1, which

demonstrates the effectiveness of the proposed LASSO approach for classifying subjects into
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different risk groups. This argument is supported by the boxplot of the linear risk scores for

subjects with δ = 1 and δ = 0 (Figure 1). The classification performance is evaluated using

ROC (Figure 1). We can see that for the purpose of classification the differences between the

LASSO, the full model and the step-wise model are negligible for the PBC data.

4.2 Application to DLBCL data

Alizadeth et al. (2000) reported a genome-wide gene expression profiling analysis for diffuse

large B-cell lymphoma (DLBCL), in which a total of 96 normal and malignant lymphocytes

samples were profiled over 17856 cDNA clones. None of the patients included in this study

had been treated before obtaining the biopsy samples. 40 patients had follow-up survival

information, including 22 deaths with survival time ranging from 1.3 to 71.3 months and 18

alive, with followup time ranging from 51.2 to 129.9 months. The goal is to identify genes

whose expression levels are significantly associated with survival. Global normalization of

gene expressions is carried out, so that different genes are comparable.

We assume the additive risk model (1) and apply the proposed LASSO approach. The

underlying biological assumption is that multiple genes contribute to the hazard of event inde-

pendently in an additive manner. The proposed approach has no computational or method-

ological limitation on the number of genes that can be used in the prediction of patients’

event times. However, if we apply the proposed approach directly, manipulation of 13413-

dimensional matrices is needed. To avoid the instability caused by using existing software, we

apply the two-step approach in Rosenwald et al. (2002). For s = 1 . . . 13413, we fit marginal

additive models with the expression levels for the sth gene as a one-dimensional covariate. All

genes with marginal p-values less than 0.01 are included in the second step additive model

fitting. Similar approach has been extensively used in previous studies (see Li and Luan, 2003

for reference). 122 out of 13413 genes are identified to be marginally significant at the 0.01
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level.

Apply the proposed LASSO approach with n = 40 and d = 122. With u = 0.28 (estimated

from the 10-fold cross validation), only 9 out of 122 coefficients are not zero. We can see from

Table 2 that the genes identified by the LASSO approach are not necessarily marginally

most significant. Inference is carried out with the proposed weighted bootstrap and the

exponentially distributed weights. The non-zero coefficients estimated from LASSO are not

necessarily statistically significant. Classification based on the linear risk scores estimated from

the LASSO approach is shown in Figure 2. The difference between the survival curves for the

two risk groups (created based on the LASSO estimated linear risk scores) are significant. We

can also see the obvious difference between the linear risk scores for the groups with δ = 1

(uncensored) and δ = 0 (censored) in Figure 2.

For comparison, we consider an additive model with the nine marginally most significant

genes (so that two models will have the same degrees of freedom). The estimates are also

shown in Table 2. The ROC curves based on the linear risk scores from LASSO and from the

nine most significant genes are shown in Figure 2. Two approaches have similar classification

performance (measured by the AUC). Roughly speaking, the LASSO estimate for the additive

model has similar classification power (measured by the AUC) as the LARS-LASSO estimate

for the Cox model in Gui and Li (Figure 3 of Gui and Li, 2004). The corresponding pseudo

martingale residuals are 5.198 (nine most significant) and 5.152 (LASSO). The correlation co-

efficient between the two sets of estimated linear risk scores is 0.73, which suggests a moderate

similarity.

In the above DLBCL data analysis, we assume that linearity is reasonable for all gene

effects. The validity of this assumption may need to be checked. We leave this important,

but not quite relevant, issue to future study.
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5. Concluding remarks

Right censored survival data with high dimensional covariates is analyzed with LASSO type

estimates in this article, under the additive risk model assumption. This procedure can be

applied to identify important covariates that are related to patients’ survival outcome. For

simplicity of notations, we assume time-independent covariate Z with only minor modifica-

tions. It can be seen that the same technique is applicable to time-dependent covariate Z.

In Lin and Ying (1994), inference for the estimate of β0 can be constructed based on

the martingale structure. For the LASSO estimate with the Cox model, Tibshirani (1997)

proposes an approximated variance estimation based on a linear estimate of the regression

parameters. Since the summation in the objective function M(β) is over d instead of n, it is

unlikely that Tibshirani’s approach will hold here. We propose using the weighted bootstrap

for inference in this article. Limited data analysis show the weighted bootstrap can produce

reasonable estimates.

With the proposed LASSO approach, we are able to identify individual covariate effects.

However, the tradeoff is that the number of covariate effects can be evaluated is limited by

the sample size. In principal, this method can identify up to min(n − 1, d) covariate effects.

This limitation is especially important for data like the DLBCL, where the dimension of the

covariates is much larger than the sample size. If it is biologically reasonable to believe the

number of covariates significantly related to survival is comparable to or larger than the sample

size, then transformation of the covariates will be firstly needed. One possibility is to use the

principal components (as in Ma, Kosorok and Fine, 2004), where the transformed covariates

correspond to ”super genes” for the genetic data.

We used the same tuning parameter u for different bootstraps. An alternative is to choose

the tuning parameter for each bootstrap based on a weighted cross validation score. For a

different penalization model, Ma and Kosorok (2004) argue that the tuning parameters selected
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from minimizing the weighted and the usual cross validation scores should be asymptotically

of the same order. We expect similar results to hold here: fixing the tuning parameter should

give the same asymptotic results as allowing for different tuning parameters for each bootstrap.

In this article, we propose using the L1 boosting for computing the L1 constrained estimator

in the additive hazard model. The computational efficacy of the L1 boosting technique for

LASSO has been thoroughly discussed in Kim and Kim (2004). Our own experience indicates

that the L1 boosting technique may converge very slowly near the optimum. Even for the case

when n > d and u is large enough, that is when exact solution to (6) is expected, it may take

many iterations for the L1 boosting to achieve the exact solution. However, the difference

between the L1 boosting solution and the exact solution estimates is negligible.

There exist several promising methodologies for linking high dimensional covariates to

survival type responses. At this point, simulation studies and data analysis are still too limited

to draw conclusions about the relative efficacy of different approaches. A comprehensive

comparison of different methods is of interest for future study.
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Table 1. Estimation of regression parameters for the PBC data with the additive risk model.

Full Model Step-wise LASSO
Covariate Estimate SE z-score Estimate SE z-score Estimate SE z-score

(×10) (×10) (×10) (×10) (×10) (×10)
age 0.025 0.008 3.109 0.027 0.008 3.452 0.033 0.015 2.200
alb -0.436 0.276 -1.582 – – – 0.000 0.000 0.000

log(alkphos) -0.055 0.115 -0.477 – – – 0.000 0.183 0.000
ascites 2.736 1.260 2.172 3.074 1.201 2.559 0.000 0.000 0.000
log(bili) 0.597 0.153 3.884 0.654 0.130 5.041 0.769 0.206 3.733
log(chol) -0.222 0.298 -0.744 – – – 0.000 0.000 0.000

edtrt 0.165 0.075 2.214 1.906 0.709 2.687 0.000 0.000 0.000
hepmeg -0.047 0.186 -0.253 – – – 0.000 0.000 0.000

log(platelet) 0.128 0.233 0.549 – – – 0.000 0.106 0.000
log(protime) 1.569 1.039 1.510 – – – 0.000 0.000 0.000

sex -0.067 0.309 -0.217 – – – 0.000 0.000 0.000
log(sgot) 0.302 0.224 1.347 – – – 0.000 0.000 0.000
spiders 0.154 0.258 0.698 – – – 0.000 0.000 0.000
stage 0.068 0.089 0.768 – – – 0.177 0.114 1.553
trt 0.035 0.150 0.233 – – – 0.000 0.000 0.000

log(trig) 0.034 0.200 0.170 – – – 0.000 0.000 0.000
log(copper) 0.183 0.107 1.717 0.217 0.103 2.111 0.062 0.148 0.419
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Table 2. Estimation of regression parameters for the DLBCL data with the additive risk model.

ID: gene ID. Rank: rank based on marginal p-values.

9 Most Significant LASSO
ID Rank Estimate SE Z-score ID Rank Estimate SE Z-score

(×10) (×10) (×10) (×10)
14837 1 0.582 0.264 2.210 14837 1 0.058 0.105 0.553
19384 2 -2.087 1.572 -1.327 17879 12 0.056 0.086 0.647
4899 3 -1.096 0.514 -2.132 12822 16 0.319 0.188 1.698
14689 4 1.795 1.067 1.682 19274 73 -0.479 0.369 -1.297
15914 5 0.574 1.293 0.444 2059 88 -0.740 0.389 -1.899
15463 6 0.495 0.545 0.907 19307 91 0.417 0.227 1.833
21309 7 -0.484 0.636 -0.761 14140 95 0.271 0.141 1.922
2808 8 0.373 0.546 0.683 19282 102 -0.332 0.220 -1.510
515 9 0.536 0.181 2.969 14049 103 0.0211 0.087 0.244
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Figure 1: PBC data: model evaluation. Upper-left: survival functions (classified by the
LASSO estimated risk scores) for two risk groups. Upper-right: linear risk scores for the
groups with δ = 0 and δ = 1. Lower-right: cross validation score plot. Lower-right: ROC
curves.
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Figure 2: DLBCL data: model evaluation. Upper-left: survival functions (classified by the
LASSO estimated risk scores) for two risk groups. Upper-right: linear scores for the groups
with δ = 0 and δ = 1. Lower-right: cross validation score plot. Lower-right: ROC curves.
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